222 research outputs found

    A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events

    Get PDF
    This paper presents the results of a search for neutrinos that are spatially and temporally coincident with 22 unique, nonrepeating fast radio bursts (FRBs) and one repeating FRB (FRB 121102). FRBs are a rapidly growing class of Galactic and extragalactic astrophysical objects that are considered a potential source of high-energy neutrinos. The IceCube Neutrino Observatory\u27s previous FRB analyses have solely used track events. This search utilizes seven years of IceCube cascade events which are statistically independent of track events. This event selection allows probing of a longer range of extended timescales due to the low background rate. No statistically significant clustering of neutrinos was observed. Upper limits are set on the time-integrated neutrino flux emitted by FRBs for a range of extended time windows

    Graph Neural Networks for low-energy event classification & reconstruction in IceCube

    Get PDF
    IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.Peer Reviewe

    Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2Ξ23=0.51±0.05 and Δm232=2.41±0.07×10−3  eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties

    IceCat-1: The IceCube Event Catalog of Alert Tracks

    Get PDF
    We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert\u27s reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT

    Measurement of Atmospheric Neutrino Mixing with Improved IceCube DeepCore Calibration and Data Processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a detailed treatment of systematic uncertainties, with significantly higher level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin⁥2Ξ23=0.51±0.05\sin^2\theta_{23} = 0.51\pm 0.05 and Δm322=2.41±0.07×10−3eV2\Delta m^2_{32} = 2.41\pm0.07\times 10^{-3}\mathrm{eV}^2, assuming a normal mass ordering. The resulting 40\% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties

    Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory

    Get PDF
    Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A - the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV - provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.Comment: Version in ApJ Letters Focus on the Ultra-luminous Gamma-Ray Burst GRB 221009

    A Search for IceCube sub-TeV Neutrinos Correlated with Gravitational-Wave Events Detected By LIGO/Virgo

    Full text link
    The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1 and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2 and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a non-detection of a significant neutrino-source population with this test.Comment: Submitted to Ap

    Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube

    Get PDF
    Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses ≳1014^{14} M⊙ and redshifts between 0.01 and ∌1 detected by the Planck mission via the Sunyaev–Zel’dovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (≳1014^{14} M⊙) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken E−2.5^{2.5} power-law spectrum

    First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory

    Get PDF
    We present a search for an unstable sterile neutrino by looking for a matter-induced signal in eight years of atmospheric ΜΌ\nu_\mu data collected from 2011 to 2019 at the IceCube Neutrino Observatory. Both the (stable) three-neutrino and the 3+1 sterile neutrino models are disfavored relative to the unstable sterile neutrino model, though with pp-values of 2.5\% and 0.81\%, respectively, we do not observe evidence for 3+1 neutrinos with neutrino decay. The best-fit parameters for the sterile neutrino with decay model from this study are Δm412=6.7−2.5+3.9 eV2\Delta m_{41}^2=6.7^{+3.9}_{-2.5}\,\rm{eV}^2, sin⁥22Ξ24=0.33−0.17+0.20\sin^2 2\theta_{24}=0.33^{+0.20}_{-0.17}, and g2=2.5π±1.5πg^2=2.5\pi\pm1.5\pi, where gg is the decay-mediating coupling. The preferred regions from short-baseline oscillation searches are excluded at 90\% C.L

    Observation of high-energy neutrinos from the Galactic plane

    Full text link
    The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth's atmosphere, has been a mystery for over a century. Due to deflection in interstellar magnetic fields, cosmic rays from the Milky Way arrive at Earth from random directions. However, near their sources and during propagation, cosmic rays interact with matter and produce high-energy neutrinos. We search for neutrino emission using machine learning techniques applied to ten years of data from the IceCube Neutrino Observatory. We identify neutrino emission from the Galactic plane at the 4.5σ\sigma level of significance, by comparing diffuse emission models to a background-only hypothesis. The signal is consistent with modeled diffuse emission from the Galactic plane, but could also arise from a population of unresolved point sources.Comment: Submitted on May 12th, 2022; Accepted on May 4th, 202
    • 

    corecore